Lesson Plan

Name of the Faculty : Dr. Rajender Kumar Tayal

Discipline : Mechanical Engineering

Semester : 3rd

Subject : Strength of Materials (SOM)

Lesson Plan duration: 17 weeks (15.09.2022 to 16.01.2023)

Work load per week : Lecture -03, Practical -02

Week	Theory		EXECUTION	
	Lecture	Topic	Date	Sign.
	Day	(Including assessment/test)	Dute	oign.
1 st	1 st	Introduction about the subject & brief overview.		
		· ·		
	2 nd	Unit 1: Stresses and Strains		
		1.1 Basic concept of load, stress and strain		
		1.2 Tensile, compressive and shear stresses		
	3 rd	1.3 Linear strain, Lateral strain, Shear strain, Volumetric		
		strain,		
		1.4 Concept of Elasticity, Elastic limit and limit of		
- nd	, th	proportionality		
2 nd	4 th	1.5 Hook's Law and Elastic Constants,		
	5 th	1.6 Stress-strain curve for ductile and brittle materials,		
	3	1.6 Stress-strain curve for ductile and brittle materials, 1.7 Nominal stress		
		1.7 Nominal stress		
	6 th	1.8 Yield point, plastic stage,		
		1.9 Ultimate stress and breaking stress,		
		1.10 Percentage elongation		
3 rd	7^{th}	1.11 Proof stress and working stress,		
		1.12 Factor of safety,		
		1.13 Poisson's Ratio		
	8 th	1.14 Thermal stress and strain,		
		1.15 Longitudinal and circumferential stresses in seamless		
	41-	thin walled cylindrical shells		
	9 th	1.16 Introduction to Principal stresses		
4 th	10 th	Unit 2: Resilience		
		2.1 Strain Energy, Resilience, proof resilience and modulus of		
		resilience		

_		·	
	11 th	2.2 Strain energy due to direct stresses and Shear Stress	
	12 th	2.3 Stresses due to gradual, sudden and falling load	
5 th	13 th	TI '4 A BE 4 CT 4	
5	13	Unit 3: Moment of Inertia	
	th	3.1 Concept of moment of inertia and second moment of area	
	14 th	3.2 Radius of gyration,	
		3.3 Theorem of perpendicular axis and parallel axis (with	
		derivation)	
	15 th	3.4 Second moment of area of common geometrical sections :	
		Rectangle, Triangle, Circle (without derivation); Second	
		moment of area for L,T and I section	
6 th	16 th	3.5 Section Modulus	
	17 th	Luit 4. Danding Managet and Chapping Farms	
	1 /	Unit 4: Bending Moment and Shearing Force	
		4.1 Concept of various types of beams and form of loading,	
	1 Ofh	4.2 Concept of end supports-Roller, hinged and fixed	
	18 th	4.3 Concept of bending moment and shearing force,	
		4.4 B.M. and S.F. Diagram for cantilever with and without	
th	th	overhang subjected to concentrated and U.D.L	
7 th	19 th	4.4 B.M. and S.F. Diagram for cantilever and simply	
		supported beams with and without overhang subjected to	
		concentrated and U.D.L	
	20 th	1 st sessional test (Tentative)	
	21 st	Assessment	
8 th	22 nd	Unit 5: Bending Stresses	
		5.1 Concept of Bending stresses	
	23 rd	5.2 Theory of simple bending, Derivation of Bending	
Equation,			
		5.3 Use of the equation	
	24 th	5.4 Concept of moment of resistance	
		3.1 Concept of moment of resistance	
9 th	25 th	5.5 Bending stress diagram	
	26 th	5.6 Section Modulus for rectangular, circular and symmetrical	
		I section	
	27 th	5.7 Calculation of maximum bending stress in beams of	
		rectangular, circular, and T section	
10 th	28 th	Unit 6: Columns	
		6.1 Concept of column, modes of failure,	
		6.2 Types of columns, modes of failure of columns	
	29 th	6.3 Buckling load, crushing load,	
		6.4 Slenderness ratio,	
	30 th	6.5 Effective length, 6.6 End restraints,	
	30		
	30	6.7 Factors effecting strength of a column,	

11 th	31 st	6.8 Strength of column by Euler Formula without derivation, 6.9 RankineGourdan formula (without derivation)	
	32 nd	2 nd sessional test (Tentative)	
	33 rd	Assessment	
12 th	34 th	Unit 7:Torsion 7.1 Concept of torsion, difference between torque and torsion	
	35 th	7.2 Derivation of Torsion Equation, use of torsion equation for circular shaft, (solid and hollow)	
	36 th	Numerical Problems	
13 th	37 th	7.3 Comparison between solid and hollow shaft with regard to their strength and weight,	
	38 th	7.4 Power transmitted by shaft	
	39 th	7.5 Concept of mean and maximum torque	
14 th	40 th	Unit 8: Spring 8.1 Closed coil helical springs subjected to axial load and calculation of: - Stress deformation	
	41 st	8.1 Closed coil helical springs subjected to axial load and calculation of: - Stiffness and angle of twist and strain energy	
	42 nd	8.1 Closed coil helical springs subjected to axial load and calculation of: - Stiffness and angle of twist and strain energy	
15 th	43 rd	8.1 Closed coil helical springs subjected to axial load and calculation of: - Strain energy and proof resilience.	
	44 th	8.2 Determination of number of plates of laminated spring (semi elliptical type only)	
	45 th	Revision	
16 th	46 th	3 rd sessional test (Tentative)	
	47 th	Assessment	
	48 th	Revision	
17 th	49 th	Revision	
	50 th	Revision	
	51 st	Revision	

Lesson Plan

Name of the Faculty : Dr. Rajender Kumar Tayal

Discipline : Mechanical Engineering

Semester : 3rd

Subject : Strength of Materials (SOM)

Lesson Plan duration: 17 weeks (15.09.2022 to 16.01.2023)

Work load per week : Lecture -03, Practical -02

Week			EXECUTION			
	Practical Day	Topic	G1	G2	Sign.	
1 st	Day 1 st	Introduction about the Lab & brief discussion over the Lab practical's to be conducted.				
2 nd	2 nd	1. Tensile test on bars of Mild steel and Aluminium				
3 rd	3 rd	1. Tensile test on bars of Mild steel and Aluminium				
4 th	4 th	2. Bending tests on a steel bar or a wooden beam				
5 th	5 th	2. Bending tests on a steel bar or a wooden beam				
6 th	6 th	3. Impact test on metals a) Izod test				
7 th	7 th	Checking of Practical file/ 1st sessional test (Tentative)				
8 th	8 th	3. Impact test on metals b) Charpy test				
9 th	9 th	4. Torsion test of solid specimen of circular section of different metals for determining modulus of rigidity				

1 oth	1 oth	4 TD :		
10 th	10 th	4. Torsion test of solid specimen of		
		circular section of different metals		
		for determining modulus of rigidity		
11 th	11 th	5. To plot a graph between load and		
		extension and to determine the		
		stiffness of a helical spring		
12 th	12 th	Checking of Practical file/		
12	12	Checking of Fractical file/		
- 1	- 1	2nd sessional test (Tentative)		
13 th	13 th	5. To plot a graph between load and		
		extension and to determine the		
		stiffness of a helical spring		
14 th	14 th	6. Hardness test on different metals		
1.				
15 th	15 th	6. Hardness test on different metals		
15	15	6. Hardness test on different metals		
16 th	16 th	Checking of Practical file/		
		3rd sessional test (Tentative)		
17 th	17 th	Checking of Practical file/		
		Evaluation		
		D'allaction		